County and Local Road Infrastructure Needs Assessment and Asset Inventory Toolkit Development

Dickinson, Stanley, Mandan, Fargo, Devils Lake

Tim Horner and Dale Heglund
Upper Great Plains Transportation Institute

July 2015
Today’s Presentation:

- History of local road/infrastructure needs studies
- Review of most recent infrastructure study and proposed study improvements
- General methodology for 2015-17 study
- General concepts for advancing legislative initiative for asset inventory toolkit development
• Local Roads Infrastructure Needs Study Process

Assessment of ND County and Local Road Needs, 2013-2015
Upper Great Plains Transportation Institute

- Infrastructure Needs Studies History
 - 2007: NDDOT
 - 2009: NDDOT Level of Service Study
 - 2010: ND Association of Oil and Gas Producing Counties/ND Commerce Department
 - 2011-13: North Dakota Legislature
 - 2013-15: North Dakota Legislature
 - 2015-17: North Dakota Legislature
Data Collected for 2013-15 Study

• Jurisdictional data for 52 counties
• 1,000+ vehicle counts and classifications by NDDOT & UGPTI
• 5,600 miles of pavement video image, pavement distress and ride data.
• 1,500 miles of pavement/subgrade strength and depth surveys
• Gravel costing surveys for all 53 counties
• NBIS data on 2,327 local bridges
Created for the 2013-15 Study

- A statewide CUBE-based truck traffic flow model

- An AASHTO-93 Pavement Deterioration Model to predict pavement needs and remaining life
Created for the 2013-15 Study

• A bridge deterioration and improvement model.
 – A study of bridges located on minimum maintenance roads – approximately 400 bridges excluded from the analysis.
Created for the 2013-15 Study

• An on-line interactive map showing images and data collected for the study so that it was available to the counties.
On-line Interactive Map – Pavement Condition

2013 County Road Information

Zoom in and turn on/off layers below. HELP

- Layers
 - Pavement Condition (PSR)
 - PSR_comb
 - 0.1 - 2.0
 - 2.1 - 3.0
 - 3.1 - 4.0
 - 4.1 - 5.0
 - Strength Testing (Sub E)
 - Subgrade_E
 - Not Tested
 - 0.1 - 6.0
 - 6.1 - 10.0
 - 10.1 - 20.8
 - Bridge (Suf Rating - Projects)
 - Sufficiency Rating (0 to 100)
 - 0.0 - 50.0
 - 50.1 - 70.0
 - 70.1 - 90.0
 - 90.1 - 100.0
 - Bridge (Suf Rating - Non Projects)
 - Sufficiency Rating (0 to 100)
 - 21.5 - 50.0
 - 50.1 - 70.0
 - 70.1 - 90.0
 - 90.1 - 100.0
 - Truck Traffic - Class Counts
 - TOT_TRUCKS
On-line Interactive Map – Pavement Condition
Outcome of 2013-15 Study

Table D: Summary of All Road and Bridge Investment and Maintenance Needs for Counties and Townships in North Dakota (Millions of 2014 Dollars)

<table>
<thead>
<tr>
<th>Period</th>
<th>Statewide</th>
<th>Oil Patch</th>
<th>Rest of State</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-16</td>
<td>$1,172</td>
<td>$598</td>
<td>$575</td>
</tr>
<tr>
<td>2017-18</td>
<td>$1,026</td>
<td>$466</td>
<td>$561</td>
</tr>
<tr>
<td>2019-20</td>
<td>$981</td>
<td>$498</td>
<td>$483</td>
</tr>
<tr>
<td>2021-22</td>
<td>$954</td>
<td>$509</td>
<td>$444</td>
</tr>
<tr>
<td>2023-24</td>
<td>$796</td>
<td>$373</td>
<td>$422</td>
</tr>
<tr>
<td>2025-34</td>
<td>$4,269</td>
<td>$2,043</td>
<td>$2,226</td>
</tr>
<tr>
<td>2015-34</td>
<td>$9,086</td>
<td>$4,430</td>
<td>$4,657</td>
</tr>
</tbody>
</table>
Positive Feedback from Counties and Legislators on the 2013-15 Study

- Almost all liked the interactive map.
- First time many had any objective pavement ratings available to them.
- Study provided a basis for investing in transportation infrastructure.
Concerns from Counties and Legislators about 2013-15 Study

• Pavement condition scores are not reflecting age of lower layers of pavement
 – Also want more accurate shoulder width and pavement thickness
• Counties not uniformly reporting gravel costs
• No costs for minor structures
• Some counties unaware of data requests
Outlook for the Coming Study

- Legislative expectations for ever-improving data
 - Emphasis on uniformity of gravel costing submissions
 - Additional improvements to county pavement condition data
 - Continued improvement to traffic data and forecasting
 - Updated costing and modeling concepts
 - Capture more accurate history data from counties – asset inventory tool.
Outlook for the 2015-17 Study

- Legislative expectations:
- Continued emphasis on maintaining system – not providing for major upgrades.
Proposed Study Process/Major Steps

• Data Collection
 – Costs and practices surveys – gravel costing and practices
 – Conduct/acquire traffic counts
 • Partner with NDDOT – same as 2013
 – Condition assessment – paved roads
 • Pavement condition with pathway van
 – Non-destructive strength testing
 • Pursue additional 1/3 of remaining paved miles
Proposed Study Process/Major Steps

- Additional pavement data intended to improve pavement modeling
 - Roadway Width, Pavement Thickness, Pavement Age, etc.
 - Request Counties to supply this information via asset inventory tool or survey
- Jurisdiction – ownership and maintenance responsibility - ask for review of past data
- Model Traffic, Road Costs & Assess Needs
 - Review results with Counties through LTAP
- Present Data via on-line map
 - Enhanced version of 2014 version
Cost and Practices Surveys

- Survey of both counties and townships
 - 2013-14 study: 51 county responses, 635 township responses
- Responses reflective of actual improvement and maintenance activities is critical
- Comparison between neighboring counties
 - Cost
 - Overlay frequencies
 - Regional average
Cost and Practices Surveys

- Aggregate (gravel) cost at pit
- Placement cost
- Transportation cost from pit to roads
- Dust suppressant usage/cost
- Stabilization usage/cost
- Intermediate practices
 - Stabilization/armor coat
 - Double chip seal/armor coat
 - For Example – asphalt surface treatment
Traffic Data Collection

• Data collection
 – Joint collection with NDDOT staff and NDSU students
 – Normal NDDOT count schedule covers 2500 counts
 – 500 additional counts will be taken across state.
 – Will supplement with other local counts

• Traffic data processing
 – Use ATR’s from around state to factor the data
 – Use classification data to factor the volume counts
 – Input all traffic data into travel demand model

• Traffic data reporting
 – Specific count location data will be made available with an interactive map on the Web.
Pavement Data Collection

• Condition data collection
 – Collect data with NDDOT Pathway van
 – Approx. 5,000 miles of paved county roads
 – Will not collect short segments
 – Van will provide consistent pavement distress and ride information
 – Collecting data currently to mid August

• Scoring and reporting of data
 – New van has automatic scoring which will need calibration
 – NDSU students will do some manual scoring for validation
 – Data will be referenced to roadways to provide on-line mapping

• Other geometric data
 – Pavement and shoulder width will also need to be collected
Pavement Data Collection

• Non-destructive testing
 – Purpose: Expand the number of sample sections collected
 – Falling weight deflectometer (FWD) and ground penetrating radar (GPR)
 – Western ND – all pavements not recently improved and pavements not collected in last study
 – Eastern ND – additional sample roads not collected in last study
 – FWD will be done first and GPR will be done on the sites (based on GPS) thumped with FWD
Traffic Model

- Objective – update and enhance county and local roads traffic model developed for the 2013-14 Legislative study
- Model calibration – using most recent counts, where applicable
- Non-modeled areas – counts may determine traffic levels in non-modeled areas
Traffic Model

• Modeling
 – The entire modeling process will utilize Cube Base, Voyager and Cargo.
 – Specific models for ag commodities and oil movements
 • PSC grain data movements
 • NDO&G oil well projections
 – Coordination with NDDOT
Pavement Analysis

- Pavement deterioration and recommended improvement process
 - Given starting pavement condition and traffic, remaining pavement life is estimated
 - Verify past assumptions on subgrade strength
 - Apply traffic projections and current PSR
 - Determine recommended improvements and costs based on width, starting condition, and future traffic estimates
Jurisdiction and Maintenance Survey

• UGPTI needs to consult with counties to verify the jurisdictional responsibilities of roadways below the state system

• County major collector – data currently exists with NDDOT
Jurisdiction and Maintenance Survey

UGPTI needs to consult with counties to identify jurisdictional responsibilities for roadways not on the state system

- Township
- Township owned, but maintained by the county
- Minimum maintenance roads
- Private
- IRR – maintained by the tribes
- IRR – maintained by counties
- Municipal
- Forest Service
- Air Force
- Other Federal Roads
- Scenic Routes
- Wildlife/Conservation Routes
Jurisdiction and Maintenance Survey

- UGPTI data collection procedures
 - NDLTAP representatives will meet with county representatives as part of their regular calls on counties
 - UGPTI will create on-line tool for updating data
 - On-line web tool will be used to report data
Study Activities

- Traffic counts - currently underway
- Traffic modeling - currently underway
- Road condition assessment – currently underway
- County cost and practices survey – August
- Township cost and practices survey – August
- County/TWP/other – jurisdiction and maintenance survey – August
- Establish a periodic county briefing newsletter
NDSU-UGPTI Study Team

• Denver Tolliver – UGPTI Director
• Alan Dybing – Associate Research Fellow
 – Traffic Modeling/HERS-ST Modeling
• Tim Horner – Program Director
 – Pavement/Bridge Costing, Project Coordination
• Brad Wentz – Program Director
 – Pavement Condition, Traffic Data, County Scenarios
• Transportation Research Engineer
 – Pavement Non-destructive testing and bridge deterioration
• Pan Lu - Associate Research Fellow
 – Bridge Deterioration Modeling
• Dale Heglund
 – LTAP Program Director
Questions about Infrastructure Needs Study?
Now let’s look at the Local Roads Asset Inventory Toolkit Concepts
Local Roads Asset Inventory Toolkit

• UGPTI Advisory Council Advanced the Concept of Road and Bridge Asset Management Tool Development
• 2015 Legislature Appropriated Funds for an Asset Management Initiative.
 – Intended to focus on providing tools for local governments to preserve and maintain roads and bridges.
Local Roads Asset Inventory Toolkit

• Initial Steps:
 – Establish an Advisory Group of County Representatives.
 • Try to get regional representation
 • Ask NDAoC to participate as well
 – Focus on building data inventory important to county road managers
 • Build so it links to on-line mapping built for past study
Local Roads Asset Inventory Toolkit

• Building Data Inventory Examples:
 – Initial Items to Develop:
 • Web/Map based input system
 • Paved Roadways Data Set
 • Gravel Roads Data Set
 • Bridges
 – Explore Adding Minor Structures (less than 20 ft.)
 • Other critical infrastructure items
Local Roads Asset Inventory Toolkit

- Building Data Inventory Examples:
Local Roads Asset Inventory Toolkit

- Building Data Inventory Examples:
Local Roads Asset Inventory Toolkit

• Future Possible Steps:
 – Pavement Deterioration/Cost Analysis Tools
 • Predict Future Pavement Condition
 – Gravel Cost Tracking Tools
 – Bridge Planning/Costing Tools
 – Jurisdictional Tracking
 • Ownership
 • Maintenance Responsibility
 – Others as suggested by advisory group
Questions about Asset Inventory Initiative?
Questions

Alan Dybing
701-231-5988
alan.dybing@ndsu.edu

Tim Horner
701-328-9859
timothy.horner@ndsu.edu

Brad Wentz
701.231.7230
bradley.wentz@ndsu.edu

Dale Heglund
701-328-9857
dale.heglund@ndsu.edu