Western Dakota Energy Association
Annual Meeting

Refracs: Completion Discussion for Bakken Generation 1 Wellbores

Originally presented to the Interim Energy Development and Transmission Committee by Pete Lewis (Completion Engineer), Jeff Parker (Region Manager), and Zac Weis (Government Relations) – August 1st, 2017

Subsequently presented at the North Dakota Petroleum Council Annual Meeting by Curtis Ryland (Regional Vice President) – September 28th, 2017.

“Marathon Oil”, the blue wave and combinations thereof are registered trademarks of Marathon Oil Company.”

“This document is protected by copyright and may not be reproduced, modified, distributed, displayed, or published without the prior written permission of Marathon Oil Company. Do not alter or remove any trademark, copyright or other notice.”
MRO Completion and Stage Spacing Evolution

- **Stage Spacing, Ft**

- **2006-2009**
 - Open Hole, no liner

- **2009-2012**
 - 10-15 stages 4.5” lateral liner
 - 20 stages, sliding sleeves, frac down 4.5” Tieback
 - 30 stages, sliding sleeves
 - 30-34 stages, sliding sleeves
 - 30-40 stages, sliding sleeves and PNP

- **2013-2017 Plan**
 - 30-60 stages, averaging 45 PNP
 - 40-50 stages, sliding sleeves and PNP
 - 30-60 stages, averaging 45 PNP

- **15 stages with swell packer zonal isolation**
MRO Proppant Loading Evolution

2006-2009
~45 lbs/ft

Completion trials

Proppant Per Lateral Foot (ppf)
Well Type of Current Re-frac Program

Open-hole or ‘Barefoot’ Completions (2006-2009)

‘Barefoot’- Open Hole Wells:

- Typically completed with 6” open hole horizontal laterals
- Initial treatment: low concentration stimulations pumped at high rates
 - Used rate for diversion
 - Placed a disproportionate amount of proppant near heal
- Marathon has an active re-frac program to optimize recovery from initial ‘Barefoot’ completions
 - Project shows competitive economics
What does it take to Refrac an Open Hole Lateral?

- Refrac Candidate Selection
 - Thorough well history review to identify operational risk
 - Squeeze perforations, sidetracks, or any mechanical constraint
- Pre-investment Approvals
- Well preparation
 - Decompletion
 - Completed by a workover rig
 - Remove the existing production equipment (surface + downhole)
 - Test the casing and securing the well for large (drilling) rig mobilization
 - Downhole Equipment Installation
 - Clean-out run to TD
 - 4-1/2” lateral liner installation (cemented in-place)
 - Run 4-1/2” tieback string
- Stimulation execution
 - 5.5 MMlbs proppant
 - 110 Mbbls water
- Coiled tubing clean out (mill up frac plugs)
- Flowback
- Production
Overview of Existing Horizontal Well Types

Generation 1 Staged Completions (2009-2011)

Generation 1 Staged completions:
- Ball + Seat (sliding sleeve) systems with annular packers for isolation
- Limited stages (<20) with low proppant concentration within each stage
 - Mechanical isolation of each stage
 - Placed a proportionate amount of proppant across each stage
 - Significantly lower induced fracture complexity than current design
- Initial completion limits ID (access) and increases cost/risk of operations required for re-frac
Available Refrac Completion Options

Existing Generation #1: Ball + Seat Systems Refrac Option #1

• **Option #1: Particulate Diverters**
 – Existing Ball + Seat installations can be refrac’d using the existing 4-1/2” liner assembly
 • Requires a lateral liner cleanout before and after treatment
 – Also, a 4-1/2” tieback string installation
 • Least expensive option
 • Multiple stages of proppant and particulate diverter pills are ‘bull headed’ from surface
 • Concept is predicated on treating path of least resistance
 – Generating enough ‘net’ pressure to divert flow to another sleeve

![Diagram of particulate diverters](image)

Challenges:
• Least effective option. There is no reliable way to divert to different sleeves other than pumping particulates.
• Difficult to add effective perforations and additional zones
Available Refrac Completion Options

Existing Generation #1: Ball + Seat Systems Refrac Option #2

• Option #2: Inner String Installation (with sleeves)
 – Install a 3-1/2” Flush Joint (FJ) lateral liner with a slim-hole ball + seat system (using swell packers for zonal isolation)
 • Ball + Seat Sliding Sleeve system (27 Stages possible, but not practical due to ID)
 • Annular isolation accommodated by swell packers
 • A 2-7/8” system cut for 3-1/2” Flush Joint tubing to minimize friction pressure
 • If more stages are required, the lateral liner must be perforated prior to running the internal assembly

Challenges:
• The 2-7/8” ball and seat systems leave a small ID which limits any remedial workover capability. (2.1” max)
 • An operationally difficult completion to install and maintain. Small tools limit options to clean out sand/debris.
 • Not practical for longer laterals - measured depth limitation of 2.0” tools
 • Difficult to add perforations (more zones)
Available Refrac Completion Options

Existing Generation #1: Ball + Seat Systems Refrac Option #3

• **Option #3: Inner String Installation**
 - Install a Flush Joint (FJ) lateral liner (inner string) to accommodate Plug and Perforation stimulation techniques.
 - Annular isolation can be accommodated with either:
 - #1: Expandable packers (for zonal isolation)
 - #2: Can be cemented in place despite tight clearances
 - Designed for plug and perforation re-stimulation activity
 - More versatile than available ball + seat systems due to a larger ID.
 - **Accommodates increasing the stage count and the use of particulate diverter**

Challenges:
- Very tight tolerances to deploy especially in depleted conditions
- Cement isolation very difficult due to low circulation rates
- Expensive specialty pipe required for 3-1/2” installation
What does it take to Refrac a Generation 1: Ball + Seat Installation?

• Well preparation
 – Decompletion
 • Completed by a workover rig
 – Remove the existing production equipment (surface + downhole)
 – Mill up the existing ball seats to accommodate an inner string deployment
 – Install a 4-1/2” tieback string (likely)
 – Downhole equipment installation
 • Deploy an inner string (2-7/8” or 3-1/2”) inside the existing 4-1/2” lateral liner
 – Zonal isolation achieved by either cement or mechanical (expandable packers) 4-1/2” lateral liner installation (cemented in-place)
• Stimulation
 – Plug and perforation techniques
• Coiled tubing clean out (mill up frac plugs if Plug and Perforation Techniques are used)
• Flowback
• Production
Initial Completion and Remaining Hydrocarbon

Reservoir Pressure Maps

- Significant **un-depleted area** before refrac with original open hole completion

- **Open hole** completions has greater undrained area resulting in **larger remaining hydrocarbon** volume

- **Generation 1 completions** refrac’d by **adding stages** to the original completion
Re-frac Project Value

Economics driven by remaining hydrocarbon

Refrac Project Value Plot

- Project economics grossly depends on **remaining hydrocarbon** volume accessible with a refrac

- Largest remaining refrac inventory is **Generation 1** completions (10-20 stages)

- Variation in reservoir properties, well production and completion history generate **uncertainty** around refrac performance

* Bubble size represents remaining refrac inventory

- performance uncertainty
Staged Completion Re-frac Considerations

How do we reduce economic uncertainty to better understand potential value?

Top View Generation 1 Completion (< 20 stages)

- **before refrac**
 - Undrained area
 - Well

- **after refrac**
 - Refrac'd with 33 additional stages
 - Well
 - Heel
 - Toe

Reserves / Resources

- Incremental benefit uncertainty
- Dependent on:
 - DSU remaining hydrocarbon volume
 - Re-frac completion effectiveness
 - Geologic uncertainty

Completion

- Cost of technology
- Risk of execution
- Operational risk of future well work activities due to reduced ID requiring small tools in tight clearance

Investment Decisions

- Deferred production / risk of lost production from existing well
- Partner approval requirements
- Confidence in technology
- Economic competitiveness within opportunity portfolio